

NFRC SIMULATION IN ACCORDANCE WITH ANSI/NFRC 100, ANSI/NFRC 200 and NFRC 500

	Aluminco S.A. Inofita Greece 32011 +30 22620 47000 port Summary	N/A										
	port Summary											
DATT		Report Summary										
AL 450 2016-10-28 2017-04-18	Product Line ID Number: Report Type: Simulation Date : Number of Pages:	N/A Initial Certification 2016-10-28 6										
Reis	sue Information											
N/A N/A N/A	Date of Reissue: Revision Date:	N/A N/A										
Validation te	st sample configuration											
DATT AL 450 AT AT None	Panel Core Fill: Skin: Sub-Structure:	n: N/A N/A N/A N/A N/A										
	N/A N/A N/A Validation te DATT AL 450 AT AT None	N/A Date of Reissue: N/A Revision Date: N/A Validation test sample configuration DATT Door description AL 450 Panel AT Core Fill: AT Skin:										

Glazing: FZTE_SB70XL#2-Arg90-ClrPPG

Туре:	Double Sealed Unit		Thic	kness				Emiss	sivity			
Spacer Type:	S6-D		mm	inch	S1	S2	S3	S4	S5	S6	S7	S 8
Overall Thickness:	28.98 mm (1.14'')	Glass 1	5.0	0.20	0.842	0.018						
Filling Technique:	Single probe	Glass 2	6.0	0.24			0.840	0.840				
Design Gas Fill:	Argon/Air	Glass 3	N/A	N/A					N/A	N/A		
Gas	90% Argon, 10%	Glass 4	N/A	N/A							N/A	N/A
Concentration:	Air	Gap 1	17.98	0.71								
		Gap 2	N/A	N/A								
		Gap 3	N/A	N/A								

U:2.07 W/(m².K); 0.36 BTU/(hr.ft².F)

Note: Reference must be made to CLEB laboratory Inc. complete report for specimen description and detailed simulation results.

Simulated by:

Dave Deshaies Mc Mahon, Eng. Simulator, Thermal Evaluation CLEB laboratory Inc.

Montréal

1320 boul. Lionel-Boulet Varennes, Québec J3X 1P7 montreal@cleb.com Québec 420 boul. Charest Est, suite 300 Québec, Québec G1K 8M4 quebec(@cleb.com Approved by:

Ingrid Volbert NFRC Certified Simulator, Person in Responsible Charge CLEB laboratory Inc.

Ottawa

29 Capital Drive, suite 200 Ottawa, Ontario K2G 0E7 ottawa@cleb.com **Truro** 64 Inglis Place, suite 203 Truro, Nova Scotia B2N 4B4 truro@cleb.com New York

- 747 Third Avenue, 2nd Floor
- New York, NY 10017 newyork@cleb.com

www.cleb.com T 855.353.CLEB (2532)

TABLE OF CONTENTS

1		1
2	SPECIFICATION	1
3	DISCLAIMER	1
4	PRODUCT DESCRIPTION	2
5	SIMULATION RESULTS	4
6	REVISION LOG	6

LIST OF TABLES

TABLE 1: CENTER OF GLAZING RESULTS	.4
TABLE 2: OVERALL FENESTRATION PRODUCTS RESULTS	.5

APPENDIX A: DRAWINGS AND PRODUCT INFORMATION

Report No: NS-02757-1 Rev.1, Reissued: N/A

NFRC SIMULATION IN ACCORDANCE WITH: ANSI/NFRC 100, ANSI/NFRC 200 AND NFRC 500

1 INTRODUCTION

CLEB laboratory Inc. has been retained by Aluminco S.A. to evaluate *a tilt turn* in accordance with ANSI/NFRC 100 Procedure for Determining Fenestration Product U-Factors, ANSI/NFRC 200 Solar Heat Gain Coefficient and Visible Transmittance and NFRC 500 Procedure for Determining Fenestration Product Condensation Resistance Values. The product components and manufacturing details are documented in section 4 of this report. Rounding is per NFRC 601 NFRC Unit and Measurement Policy. All imperial values are for reference only. Appendix A of this report includes drawings and information of the product.

Rating values included in this report are for submittals to an NFRC-licensed IA and are not meant to be used directly for labeling purposes. Only those values identified on a valid Certification Authorization Report (CAR) by an NFRC accredited Inspection Agency (IA) are to be used for labeling purposes.

The Condensation Resistance results obtained from this procedure are for controlled laboratory conditions and do not include the effects of air movement through the specimen, solar radiation, and the thermal bridging that may occur due to the specific design and construction of the fenestration system opening.

Simulations were conducted in full compliance with NFRC requirements.

2 SPECIFICATION

ANSI/NFRC 100-2014: ANSI/NFRC 200-2014: NFRC 101-2014:	Procedure for Determining Fenestration Product U-Factors Solar Heat Gain Coefficient and Visible Transmittance Procedure for Determining Thermophysical Properties of Materials for Use in NFRC-Approved Software
NFRC 500-2014:	Procedure for Determining Fenestration Product Condensation Resistance Values
NFRC 601-2010: WINDOW 7: THERM 7:	NFRC Unit and Measurement Policy Software by Lawrence Berkeley National Laboratory Software by Lawrence Berkeley National Laboratory

3 DISCLAIMER

Data required for this evaluation were taken from the best available sources and every effort was taken to accurately perform the simulation documented in this report. Because of the large amount of input data and analysis it is possible that errors or omissions could occur. Neither CLEB laboratory Inc. nor any of its employees shall be held responsible for any loss or damage resulting directly or indirectly from any default, error or omission.

Report No: NS-02757-1 Rev.1, Reissued: N/A

Simulation in accordance with ANSI/NFRC 100, 200, NFRC 500

The results in this report relate only to the items evaluated. This report shall not be reproduced except in **Page 1 of 6** full, without the written approval of CLEB laboratory Inc.

AL 450

4 PRODUCT DESCRIPTION

DATT, Tilt Turn

4.2 SERIES/MODEL:

AL 450

4.3 FRAME:

4.3.1	Material:	AT, Aluminium w/ Thermal breaks - All members
4.3.2	Finish:	Painted Aluminum
4.3.3	Reinforcement:	None
4.3.4	Weatherstrippings:	Compression bulb at all perimeter Compression weatherstripping at all perimeter
4.3.5	Continuous Hardware:	No hardware was required to be modeled
4.3.6	Overall dimensions:	1200 mm W. x 1500 mm H. (47.24 "x 59.06")
4.4	SASH(ES)	
4.4.1	Material:	AT, Aluminium w/ Thermal breaks - All members
4.4.1 4.4.2	Material: Sash 1:	AT, Aluminium w/ Thermal breaks - All members
4.4.2		AT, Aluminium w/ Thermal breaks - All members Painted Aluminum
4.4.2 <i>4.4.2.</i> <i>4.4.2.</i>	Sash 1: 1. Finish: 2. Reinforcement(s):	Painted Aluminum None
4.4.2 4.4.2. 4.4.2. 4.4.2.	Sash 1: 1. Finish: 2. Reinforcement(s): 3. Weatherstripping(s):	Painted Aluminum None Compression bulb at all perimeter
4.4.2 4.4.2. 4.4.2. 4.4.2.	Sash 1: 1. Finish: 2. Reinforcement(s):	Painted Aluminum None
4.4.2 4.4.2. 4.4.2. 4.4.2.	Sash 1: 1. Finish: 2. Reinforcement(s): 3. Weatherstripping(s):	Painted Aluminum None Compression bulb at all perimeter
4.4.2 4.4.2. 4.4.2. 4.4.2. 4.4.2.	Sash 1: 1. Finish: 2. Reinforcement(s): 3. Weatherstripping(s): 4. Continious Harware:	Painted Aluminum None Compression bulb at all perimeter No hardware was required to be modeled

Report No: NS-02757-1 Rev.1, Reissued: N/A

Simulation in accordance with ANSI/NFRC 100, 200, NFRC 500

The results in this report relate only to the items evaluated. This report shall not be reproduced except in **Page 2 of 6** full, without the written approval of CLEB laboratory Inc.

AL 450

4.5 GLAZING METHOD:									
4.5.1 Exterior face:		EPDM gasket							
4.5.2 Interior face:		EPDM gasket							
4.6 SPACER:									
Spacer type: sealant:	Material:	Primary sealant:	Secondary						
Fenzi Thermal Edge (S6-D) Polysulphide	Vinyl and Steel	Polyisobutylene							
4.7 GRID:									
4.7.1 Grid:		None							
4.7.2 Material and finish:		N/A							
4.7.3 Standard NFRC Grid	Pattern:	N/A							
4.8 GLAZING:									
4.8.1 Filling Technique:		Single probe							
4.8.2 Capillary tube:		No							
4.8.3 Gas fill percentage:		90% Argon, 10% Air							
4.8.4 Comment:		None							

Report No: NS-02757-1 Rev.1, Reissued: N/A

Simulation in accordance with ANSI/NFRC 100, 200, NFRC 500

The results in this report relate only to the items evaluated. This report shall not be reproduced except in **Page 3 of 6** full, without the written approval of CLEB laboratory Inc.

5 SIMULATION RESULTS

		Insulating Glass Unit													
	D Name		Glass 1		Gap 1		Glass 2			U factor		SHGC	νт		
		Туре	mm	Emissivity		mm	gas	Туре	mm		sivity	W/m2-K	Btu/hr-ft2-F		
		<i>"</i>		Surface #1	Surface #2		0.1	71-		Surface #3	Surface #4	•			
1	0 SB70XL#2-Arg90-ClrPPG	Solarban70xl	5.0	0.842	0.018	17.98	Arg 90%	Clear, PPG	6.0	0.840	0.840	1.428	0.251	0.270	0.628

Table 1: Center of glazing results

Report No: NS-02757-1 Rev.1, Reissued: N/A

AL 450

Simulation in accordance with ANSI/NFRC 100, 200, NFRC 500

Table 2: Overall fenestration products results

			Insulating Glass Unit					Overall Product						
ID	Option Name	Glass 1	Gap 1				Glass 2		U Factor		SHGC	VT	CR	
		Туре	mm	mm	Gas	Spacer	Grid	Туре	mm	W/m2-K	Btu/hr-ft2-F			
10	FZTE_SB70XL#2-Arg90-ClrPPG	Solarban70xl	5.0	17.98	Arg 90%	S6-D	None	Clear, PPG	6.0	2.07	0.36	0.20	0.44	48

Report No: NS-02757-1 Rev.1, Reissued: N/A

AL 450

Simulation in accordance with ANSI/NFRC 100, 200, NFRC 500

6 REVISION LOG

Revision Number NS-02757-1 Rev.1 Revision Date 2017-04-18

Description Replace some existing drawings (assembly drawing, BOM, parts) by new drawings

Report No: NS-02757-1 Rev.1, Reissued: N/A

Simulation in accordance with ANSI/NFRC 100, 200, NFRC 500

The results in this report relate only to the items evaluated. This report shall not be reproduced except in full, without the written approval of CLEB laboratory Inc.

AL 450

APPENDIX A: DRAWINGS AND PRODUCT INFORMATION

Report No: NS-02757-1 Rev.1, Reissued: N/A

Simulation in accordance with ANSI/NFRC 100, 200, NFRC 500 The results in this report relate only to the items evaluated. This report shall not be reproduced except in full, without the written approval of CLEB laboratory Inc.

Build of materials (BOM):

AI-04639-A1 & AI-04639-B1									
A/A	Code	Description	Material						
1	450-108	Frame profile	15m						
2	450-232	Casement profile	10m						
3	450-302	Transom profile	4m						
4	540-771	Bead profile	21m						
5	EA450-153	Extra crimping corner for casement	8pcs						
6	EA450-186	Crimping corner for frame	8pcs						
7	EA450-169	Crimping corner for frame	8pcs						
8	EA450-161	Crimping corner for casement	8pcs						
9	EA410-216	Alignment corner	8pcs						
10	EA450-141L/R	Transom connector	8pcs						
11	EA450-875	Vulcanized epdm corner for central gasket	12pcs						
12	EA450-874M	Vulcanized epdm corner for sash gasket	8pcs						
13	EA410-874B	Vulcanized epdm corner for frame gasket	12pcs						
14	US530-3PRM	Glazing gasket	9m						
15	EA570-448M	External epdm glazing gasket	9m						
16	EA410-408M	Epdm gasket for sash & frame with weatherstrips foam	17m						
9m	EA450-411M	Epdm central gasket	9m						
18	US710-01IA	Handle for perimetrical mechanism Siegenia	2pcs						
19	Favorit Siegenia	Perimetric mechanism ALU16	-						

AL450 DUAL-ACTION WINDOW

Manufacturer Designation / Type / Item No. Material Type of opening Opening directions

Frame member

Designation / Type / Item No. Overall dimensions in mm Type of joint

Casement member

Designation / Type / Item No. Overall dimensions in mm Type of joint

Rebate design

Rebate drainage

Rebate seal external Material Corner design

Centre seal Material Corner design

IGU double Thickness in mm Configuration in mm

ALUMINCO S.A, Inofita Viotias AL450/ ALU16/ AI-04639-A1 Aluminium profiles with thermal break Turn/ tilt and turn Active casement: right inwards opening

Further details are given in drawings 450-108 1200 x 1800mm

Mitred, compressed by using crimping corner EA450-186 and EA450-169 and sealed with pourable sealant

Further details are given in drawings 450-232

Active casement: 1748 x 1148mm

Mitred, internal with crimping corner EA450-161, crimping corner EA450-153 and alignment corner EA410-216

In frame member 2 slots 6x30mm to the outside with cover caps EA410-836M In frame member 2 slots 6X25mm to the inside

EA410-408M EPDM with foam At top and bottom butt jointed and bonded on end caps EPDM corner EA410-874B & EA410-874M

EA450-411 EPDM At top and bottom in each case butt to overlap end caps and bonded using EPDM corner EA450-875M

27 Float 6/ SZR16/ Float 5

Incorporation on infill panel

Vapour pressure equalisation

Glazing gasket external

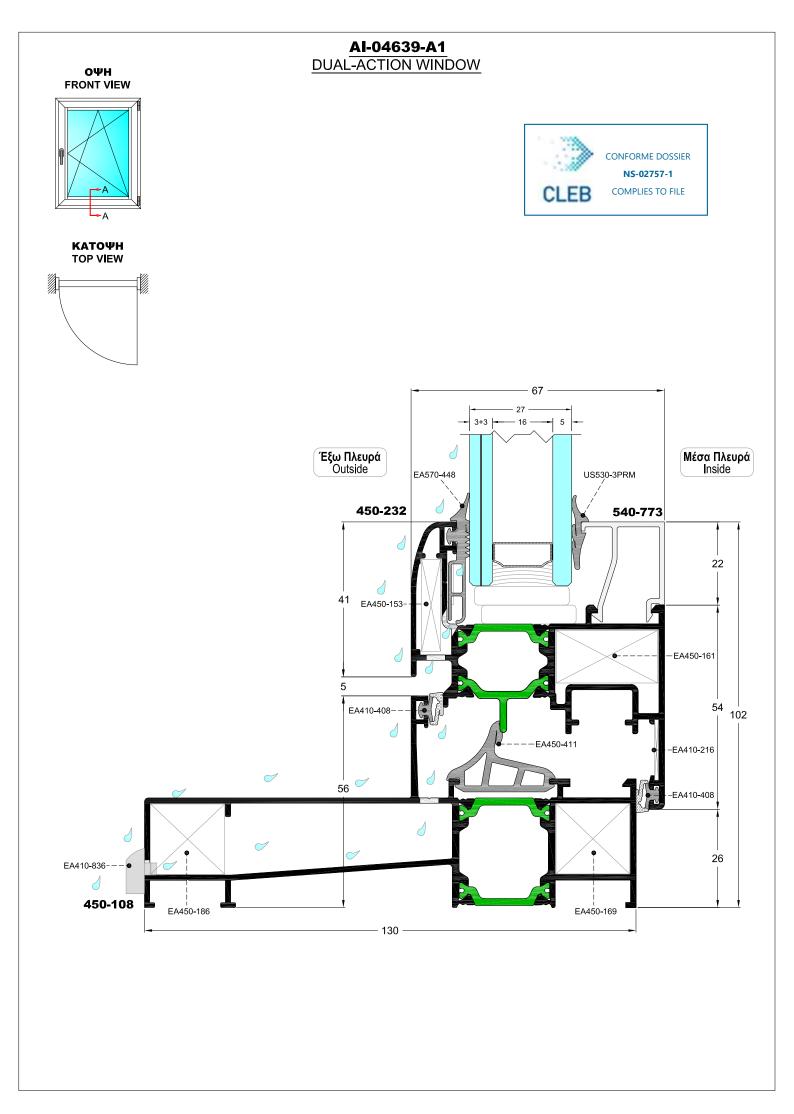
Designation / Type / Item No. Material Corner design **Glazing gasket internal** Designation / Type / Item No. Material Corner design 2 slots 6x25mm at the bottom of the casement 2 slots 6x25mm at the top of the casement and 1 drills Ø6mm at the top of each side of the frame

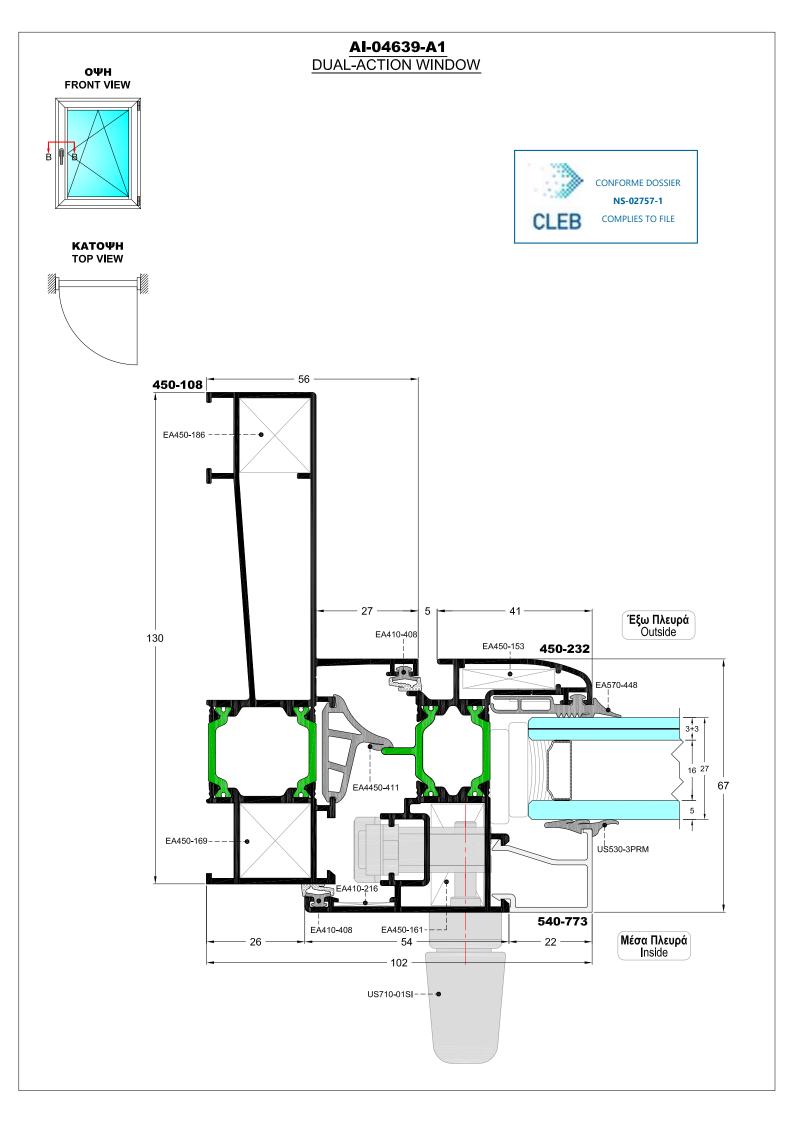
EA570-448M Sealing material-EPDM Continuous, at top centre mitred and bonded

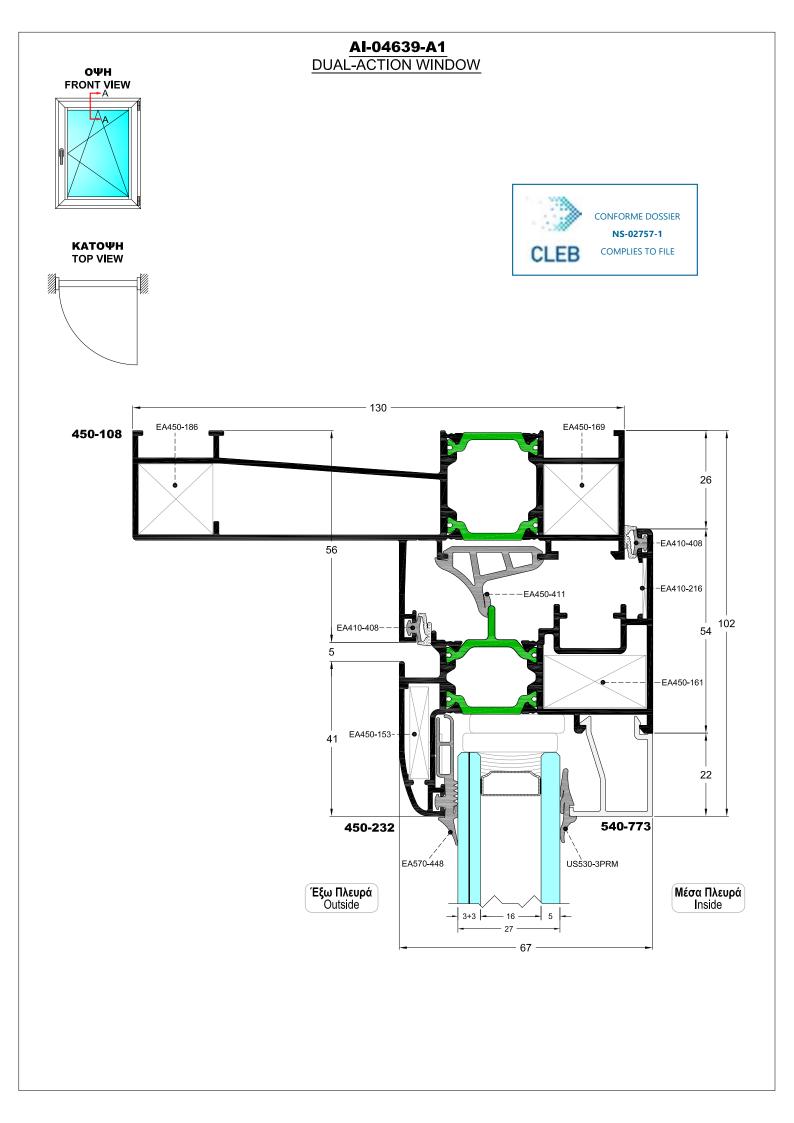
US530-3PRM Sealing material-EPDM Continuous, at top centre mitred and bonded

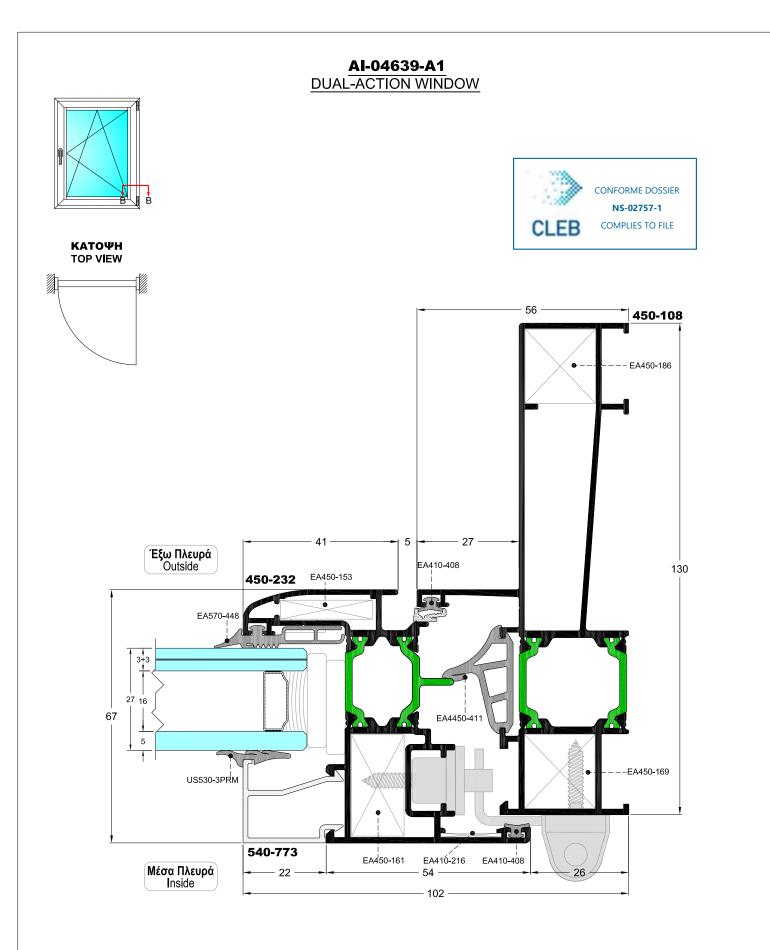
540-773

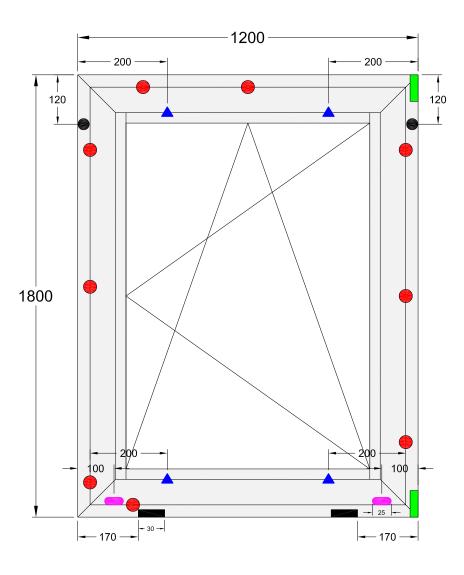
Clamped

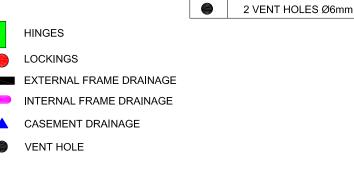

Butt-jointed

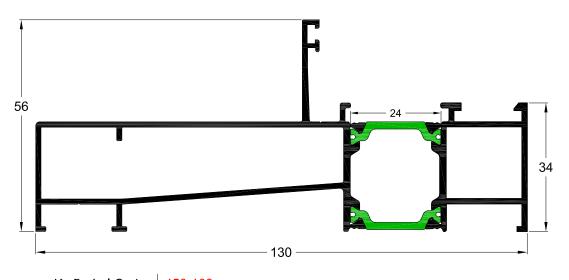

Glazing bead Designation / Type / Item No. Type of joint Fixing method

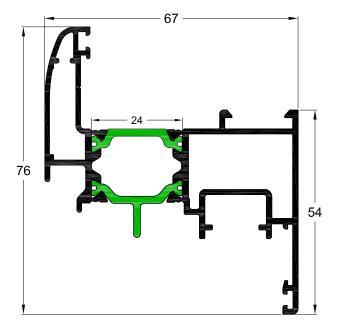

Tilt and turn hardware


Manufacturer Designation / Type / Item No. Type of opening turn/ tilt and turn Hinges/Bearings Number of locks Siegenia Favorit ALU16 Turn/ tilt and turn Active casement: 2 hinges, 1 tilt mechanism Active casement: 9 lockings

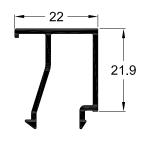




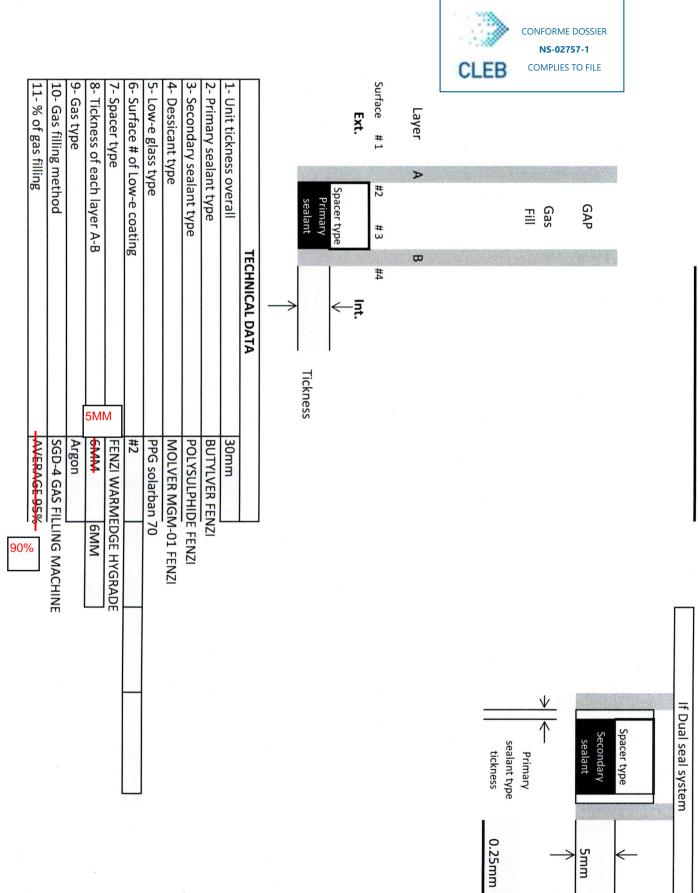

AI-04639-A1 DUAL-ACTION WINDOW


	9 LOCKINGS		CONFORME DOSSIER
	2 HINGES	CLER	NS-02757-1 COMPLIES TO FILE
	2 CASEMENT DRAINAGE 25mm	ULLD	
	2 INTERNAL FRAME DRAINAGE 25mm		
·///	2 EXTERNAL FRAME DRAINAGE 30mm		
	2 VENT HOLES Ø6mm		

AI-04639-A1 DUAL-ACTION WINDOW



Κωδικός Code	450-108
Βάρος Weight	1796 gr/m
Περιγραφή	Κάσα
Description	Frame



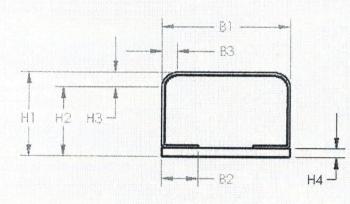
Κωδικός Code	450-232
Βάρος Weight	1414 gr/m
Περιγραφή	Φύλλο (ALU 16)
Description	Casement (ALU 16)

Κωδικός Code	540-773
Βάρος Weight	275 gr/m
Περιγραφή	Πηχάκι
Description	Bead

Name of the IG manufacturer

Saand Ottawa

FNA TECHNICAL BULLETIN


DATE: January 2010

TOPIC:

FENZI THERMALEDGE (Hygrade Metal) Spacer Technical Specifications

1. Spacer Properties

Cross Section and Tolerances

Description	Air Space Height * Fixed	PIB Flange * Fixed	Spacer Back Fill Cavity * Fixed	Thermal Bridge Thickness	Air Spacer Width * Varies	Metal Spacer Lip * Fixed	Spacer Cavity Back Fill
Spacer Bar Width	H1 +/05	H2 +/003	H3	H4 + /003	B1 +/005	B2 + /010	83
1/4	.285	.215	.067	.036	.250	.105	.067
3/8	.285	.215	.067	.036	.375	.105	.067
7/16	.285	.215	.067	.036	.438	.105	.067
1/2	.285	.215	.067	.036	.500	.105	.067
17/32	.285	.215	.067	.036	.531	.105	.067
9/16	.285	.215	.067	.036	.563	.105	.067
5/8	.285	.215	.067	.036	.625	.105	.067
11/16	.285	.215	.067	.036	.688	.105	.067
3/4	.285	.215	.067	.036	.750	.105	.067

*Please Note:

Dimensions fixed, with only the spacer width varying Chrome steel thickness fixed at .008 +/- .005

Page 1

| Hygrade Components

FNA TECHNICAL BULLETIN

Description		Internal Test Method	
1.2	Spacer geometry /shape The spacer geometry shape is shown in the cross section picture above. Tolerances shown above	Go / No Go gauge	
1.3	Length and straightness Standard length is 13 feet +/25 inches. Straightness deviation .125	Steel Ruler Visual	
1.4	Plastic Rigid PETG bridge applied to perforations in the metal with heat	90º Bend Test	
1.5	Perforation See comments below ** Perforations are typically spaced at .275 distance on center	Visual inspection	

**1.5 Level of perforation

The Fenzi Warmedge (Hygrade Metal) standard perforation in the vinyl bridge will absorb moisture vapor, regardless of spacer width as perforations fixed

**** 1.5 Function of the perforation**

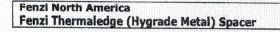
The perforation holes are able to detain dust from the desiccant, from entering the air space.

2. Spacer Material

2.1	Material	
	Chrome Steel	
	PETG Plastic Extrusion	
	Available in white, black and light & dark grey colors	
2.2	Surface	Visual test &
	The surface is clean and free of contaminates, free of any chemicals.	Adhesion test
2.3	Tolerances of the material	Measure with
	The wall thickness of the metal spacer is at .008 +/005	qauge
2.4	Lubrication	Adhesion test
	During the roll forming process, some lubrication is used. The lubrication is	
	cleaned off and will evaporate, leaving the surface without any volatile elements.	
2.5	Volatile elements	Industry Standard
	Volatile elements are tested by Dallas Laboratories, Dallas, TX	Outgas Testing

3. **Quality Aspects**

Quality Management


Fenzi Warmedge (Hygrade Metal) spacer has many customers IGMAC / IGMA certified. It is currently listed in the IGMA Directory of Spacer Components.

Tests of the Product

Processes and routines are established to secure the quality of the delivered materials to our customers. During the production process the spacers are constantly monitored through random checks for consistency in the finished spacer materials.

4. Customer Focus

To secure the performance of the spacers and maintain stock levels of finished goods at an acceptable amount. To continue to focus on our customers needs and develop additional products to meet these needs.

Page 2

TECHNICAL DATA SHEET

'POLYISOBUTYLENE (PRIMARY SEAL) FOR INSULATING GLASS UNITS'

APPLICATION FIELD

Butylver[®], is a one part polyisobutylene PIB based material, totally solvent free especially formulated for use as the primary seal in double sealed units. PIB allows for minimum water vapor and gas permeation. Butylver[®] has excellent adhesion properties to glass and metal spacer systems and can be used together with conventional secondary sealants.

- **TECHNICAL DATA**
- BASE

Polyisobutylene

Black/Grey

Solid mass.

Black Approximately 1.08 gr/cm³

Grey Approximately 1.20 gr/cm³

in accordance to EN 1279/4

- COLOUR
- CONSISTENCY
- DENSITY
- PROPERTIES
- GAS PERMEATION
 ON FILMS
- VOLATILE CONTENT (70°C)
- APPLICATION

.

0.749 x 10⁻³ [gr/m². hrs] in accordance to EN 1279/4

Max. 0.02 [%] in accordance to EN 1279/6

Moisture vapor transmission maximum 0.03 [gr/m² . 24hrs-2mm],

Application surface's must be clean, dry and free from oily residue. Butylver[®] shall be applied at a temperature between 110°C and 130°C (Approx. 230°F to 266°F)

One year stored in a dry clean environment - normal storage conditions

Check with extruder equipment manufacture for optimum equipment settings

STORAGE

PRODUCT

CLASSIFICATION

Not dangerous according to regulations in force.

PACKING

Black Cylinder type cardboard 'slug' packing **Available in:** 2 Kg (4.4 Lb) slugs - 12 per box - approx. 5" diameter x 6" high 7 Kg (15.4 Lb) slugs - 4 per box - approx. 7 1/4" diameter x 9' high Tape - 210' per roll / 10 rolls per box Drums - 200 Kg (440 Lbs)

Grey Cylinder type cardboard 'slug' packing **Available in:** 7 Kg (15.4 Lb) slugs - 4 per box - approx. 7 1/4" diameter x 9' high

Fenzi North America

11 Dansk Court Toronto, Ontario M9W 5N6 Phone: 416.674.3831 Fax: 416.674.9323 info@fenzi-na.com www.fenzi-na.ca CONFORME DOSSIER

NS-02757-1 COMPLIES TO FILE

TECHNICAL DATA SHEET

'TWO-COMPONENT POLYSULPHIDE SEALANT FOR INSULATING GLASS'

APPLICATION FIELD

TECHNICAL CHARACTERISTICS

Thiover[®] is a polysulphide sealant especially **COLOUR** formulated for insulating glass. Part A (base)

Thiover[®] is produced in different viscosities in order to suit the Individual requirements of the operator and of the equipment in use.

Thiover[®] is totally solvent free and can be used either for the production of single seal or dual seal Insulated glass units. COLOUR Part A (base): Ivory Part B (catalyst): Black Mixture (A+B): Anthracite

2 to 4 hours depending on pot life.

HARDENING TIME:

MIXING RATIO Ratio by volume: 100:10 Ratio by weight: 100:9:5 POT LIFE

Standard 40 to 90 minutes. Pot life is influenced by room conditions.

ADHESION:

Excellent on glass, aluminum, stainless steel, galvanized steel. Peel strength 180° to glass with cohesive failure: 110/25 mm. Application surface must be clean, dry and free from residue.

PHYSICAL - CHEMICAL CHARACTERISTICS

VISCOSITY (25°C / 77°F)	Part A (base) -Medium Viscosity -Low Viscosity	63000 <u>+</u> 3000 [cPs] 53000 <u>+</u> 3000 [cPs]	DIN 53019
	Part B (catalyst)	30000 <u>+</u> 2000 [cPs]	
DENSITY (20°C / 68°F)	Part A (base) Part B (catalyst)	1.77 [gr/cm³] 1.69 [gr/cm³]	DIN 53217
FINAL HARDNESS	min. 50 [Shore A]		EN 1279/6
MOISTURE VAPOR TRANSMISSION	8.0 [gr/m² - 24hrs - 2n	nm]	EN 1279/4
GAS PERMEATION ON FILMS	5.80 <u>+</u> 0.63 x 10 ⁻³ [gr/	m² hrs]	EN 1279/4
ELONGATION TO FAILURE	approx. 0.50 [%]		EN 1279/4
COHESIVE FAILURE	approx. 0.9 [MPa]		EN 1279/4
VOLATILE CONTENT (70°C / 158°F) Part A & B	Max. 0.77 [%]		EN 1279/6
STORAGE	9 months in the original containers. It is recommended to store Thiover [®] in dry and fresh rooms at a temperature between +10°C (50°F) and +30°C (86°F)		
Fenzi North America 11 Dansk Court			

11 Dansk Court Toronto, Ontario M9W 5N6 Phone: 416.674.3831 Fax: 416.674.9323 info@fenzi-na.com

SURFACE PREPARATION

GLASS - To achieve good adhesion, the glass surface must be clean and free of any residue. Your glass supplier can verify proper cleaning specifications.

SPACER - To achieve good adhesion, the spacer surface must be clean and free of any residue.

MIXING INSTRUCTIONS

Correct proportions of base and catalyst are extremely important to achieve the best results.

Please review with a Fenzi Technical Representative to ensure ratio of pumping equipment at correct settings. Given the various dispensing systems available, the Thiover[®] brand polysulphide should be metered to deliver base and catalyst at a ratio of 100:10 by volume and 100: 9.5 by weight.

PRODUCT CLASSIFICATION

Fenzi Thiover[®] is not classified as dangerous

TEMPERATURE INFLUENCE ON VISCOSITY

The viscosity of a fluid is the resistance of its particles to flow. In most liquids the viscosity is influenced by various factors, amongst which temperature has a key role. Viscosity values on our TDS are given based on the standard temperature at 25°C (77°F) While the viscosity changes due to temperature of the base material, the effect on the final mixture is negligible. It is recommended, that the material be stored in temperatures as close to those given above, for optimal applications characteristics.

PACKING - STEEL DRUMS

BASE	42.07 Imp. Gal (50.5 US Gal)
CATALYST	4.18 lmp. Gal (5.05 US Gal)
DRUM KITS	46.25 Imp. Gal (55.55 US Gal)

EQUIPMENT SERVICE CLEB

Fenzi North America will provide technical services. This includes assistance on dispensing equipment as well as literature for the Thiover® brand polysulphide. MSDS forms available through the Fenzi North America sales office.

PRODUCTION PLANT CONTROL

The Fenzi laboratory can analyze a customer's extruded mixed material to establish the final mix ratio. A fast and extremely precise determination of the catalyst can be made, using a modern technique based on X-ray fluorescence. Doing so, allows the sample analyzed to have the ratio verified - ensuring equipment used to dispense the material is accurate to correct ratio for Thiover[®] polysulphide.

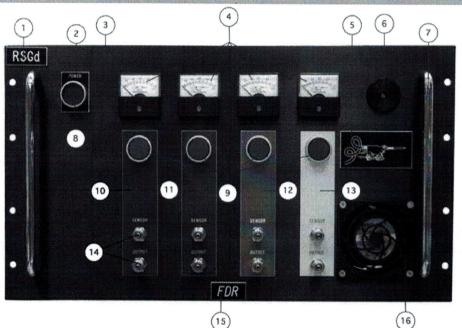
GLAZING PRACTICE

Finished IG units should be glazed in accordance with industry recognized standards - such as IGMA, ASTM, CWDMA or WDMA, guidelines for the use of various tapes, setting blocks and sealants.

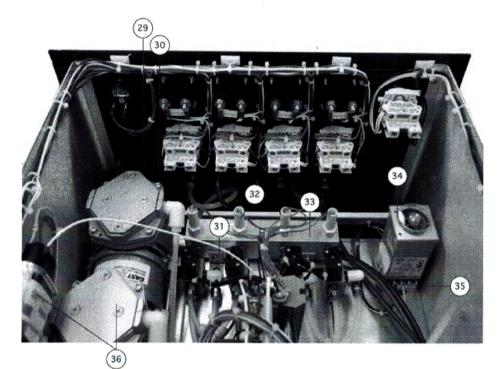
Thiover® made units typically are intended for use in both residential and commercial applications.

Thiover® brand polysulphide is found to be compatible with most glazing materials used in the market.

However, verification of the particular type of material to be used should be done through your Fenzi representative.

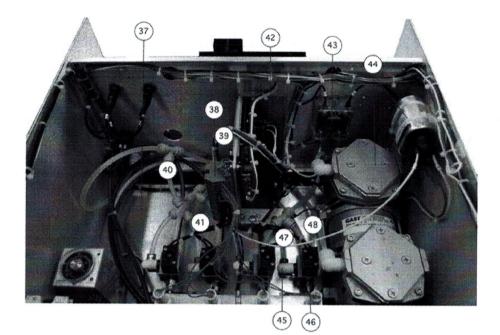


SGd-4 Gas Filling Machine

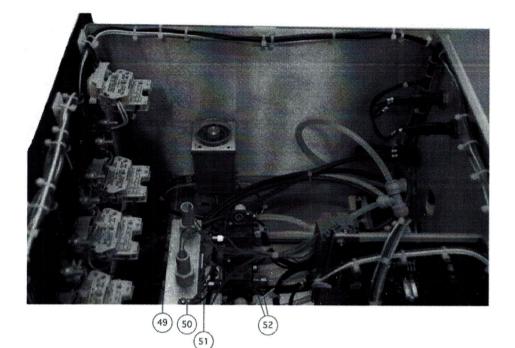

RSGd 4

Upgradeable for one hole filling capability Two hole filling; vertical fill or tilted > 10 degrees Includes FDR gas sensor and computer control Gas sensor meter for visual display of filling process Gas flow shuts off automatically when IG unit is full Flow Rate = 9-18 Liters per minute (dependant on exhaust hole size) Time to fill = (2 hole filling) 71 seconds- (1 hole filling) 110 seconds. * Complete with filling lance, sniffler, bottle regulator, and hoses Designed and manufactured in North America, serviced worldwide

RSGd 4 Exterior Front View



Reference # Description FDR Part # 29 Mini Fan 115 vac 11115 30 Black Plastic Fan Guard 11114 31 Gas Sensor Support Bracket 10042 32 Gas Sensor Element, Orange Leads 10199 33 Gas Sensor manifold block 10240 **Omron Temperature Controller** 34 11474 35 8 Pin Octal Type Socket 11184 36 Vac Pump 3 & 4 11219 **RSGd 4 Interior Back View**



Referenc	FDR Part #	
37	Sheet Metal - Base Plate	10246
38	DN-M10 Mini Term Block PLC Direct Dinectors	11360
39	DN-EB15 End Bracket	11361
40	DN-2JM10 Jumper 12 Pole	11363
41	DN-ECM10 End Cover	11362
42	Power Supply 2.4 amp 24vdc (3&4)	11156
43	Solid State Relay 24 vdc/240 vac 10 amp	11194
44	Vac Pump 3 & 4	11219
45	Muffler	11099
46	1/4 OD Hose x 1/8 thread Pro-Fit Male Connector	11756
47	1/4 OD Hose x 1/8 Thread Pro-Fit Male Elbow Swive	el <u>11752</u>
48	Hi-Flow, 24 vdc Mac valve	11206
RSGd 4 In	nterior Side View	

.

49	1/4" x 1/8-27 Barbed Fitting (Nylon)	10802
50	Type J Thermocouple	11146
51	1/4 x 1/8 Stem Adaptor	11759
52	1.2mm Nylon Barb Fitting Assembly Complete	10555

* The "Time To Fill" that is listed for the individual machines is based on the following sized unit: **Unit Size:**

Spacer: 21/32" - 0.665" - 17mm **Height:** 48" - 1220mm **Width:** 24"- 610mm **Volume:** 767 cubic inches - 0.44 cubic feet - 12.6 liters **Area:** 8 square feet - 0.74 square meters

Note: There are a large number of variables when considering time to fill. The "Time To Fill" example is the result of filling an actual unit >90% using argon gas.

Price per Unit (piece): \$12,151.00 <u>Availability</u> Usually ships in: 4-6 Weeks